Y=4x^2+7x-36

Simple and best practice solution for Y=4x^2+7x-36 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=4x^2+7x-36 equation:



=4Y^2+7Y-36
We move all terms to the left:
-(4Y^2+7Y-36)=0
We get rid of parentheses
-4Y^2-7Y+36=0
a = -4; b = -7; c = +36;
Δ = b2-4ac
Δ = -72-4·(-4)·36
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-25}{2*-4}=\frac{-18}{-8} =2+1/4 $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+25}{2*-4}=\frac{32}{-8} =-4 $

See similar equations:

| 12x+26=50 | | -4x+6=10* | | 12x=17=125 | | 3x^{2}-5=25 | | 32-2x=-12* | | h=-16(1/2)^2+40(1/2)+4 | | 3+2.5x=4x | | (2y-5)=(5y+7) | | 3=2y-12 | | 6x+8=336 | | 90+(3x+5)+(5x+4)=180 | | -7=s+4 | | X+3x-15=27+2x | | -6=b/18.18 | | -5{x-6}=-15 | | y=0+-5 | | -x/7+11=14 | | 3(35)+31=k | | (3x+5)+(5x+4)+90=360 | | 2=s2+ 1 | | -10+n=25 | | −4=+6+b | | -3x+32+7x=-2x(5x+10) | | -8+4=3x+2 | | `4x^{2}+10=46` | | 2x-6=10+3x | | -3x-4(4×-8)=3(-8x-1 | | 8/2x+20=180 | | 35x+1.50=50 | | (3x+5)+(5x+4)+90=180 | | 3x+4-7x=24 | | 8x4(4x-3)=-5-5(1+5) |

Equations solver categories